NVL COPD (2021)

Literatur

  1. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV). Beurteilungskriterien für Leitlinien in der medizinischen Versorgung - Beschlüsse der Vorstände der Bundesärztekammer und Kassenärztlicher Bundesvereinigung, Juni 1997. Dtsch Arztebl 1997; 94(33):A-2154-5.
  2. Europarat, Verbindung der Schweizer Ärztinnen und Ärzte, Ärztliche Zentralstelle Qualitätssicherung (ÄZQ), et al. Entwicklung einer Methodik für die Ausarbeitung von Leitlinien für optimale medizinische Praxis. Empfehlung Rec (2001)13 des Europarates am 10. Oktober 2001 und Erläuterndes Memorandum. Deutschsprachige Ausgabe. Z Arztl. Fortbild. Qualitatssich. 2002; 96(Suppl III):3–60.
  3. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Das AWMF-Regelwerk Leitlinien. München: Zuckschwerdt; 2012.
  4. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF)-Ständige Kommission Leitlinien. AWMF-Regelwerk Leitlinien: Version 2.0. 2020 [cited: 2021-03-22]. http://www.awmf.org/leitlinien/awmf-regelwerk.html.
  5. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Programm für Nationale VersorgungsLeitlinien - Methodenreport, 5. Auflage. Version 1. 2017 [cited: 2019-09-05]. DOI: 10.6101/AZQ/000169. http://doi.org/10.6101/AZQ/000169.
  6. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ 2004; 328(7454):1490–7. http://www.ncbi.nlm.nih.gov/pubmed/15205295.
  7. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336(7650):924–6. http://www.ncbi.nlm.nih.gov/pubmed/18436948.
  8. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie COPD - Leitlinienreport, 2. Auflage. Version 1. 2021 [cited: 2021-06-07]. DOI: 10.6101/AZQ/000478. http://doi.org/10.6101/AZQ/000478.
  9. National Clinical Guidleline Centre (NCGC). Chronic obstructive pulmonary disease in over 16s: diagnosis and management. 2010 [cited: 2018-11-13]. http://www.nice.org.uk/guidance/cg101/resources/chronic-obstructive-pulmonary-disease-in-over-16s-diagnosis-and-management-pdf-35109323931589.
  10. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2018 Report. 2018 [cited: 2018-11-13]. http://goldcopd.org/wp-content/uploads/2017/11/GOLD-2018-v6.0-FINAL-revised-20-Nov_WMS.pdf.
  11. Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), Deutsche Atemwegsliga, Österreichische Gesellschaft für Pneumologie (ÖGP). S2k-Leitlinie zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD). 2018 [cited: 2018-11-13]. http://www.awmf.org/uploads/tx_szleitlinien/020-006l_S2k_COPD_chronisch-obstruktive-Lungenerkrankung_2018-01.pdf.
  12. National Institute for Health and Care Excellence (NICE). Chronic obstructive pulmonary disease in over 16s: diagnosis and management. 2018 (NICE Clinical Guideline; 155) [cited: 2020-01-30]. https://www.nice.org.uk/guidance/ng115/resources/chronic-obstructive-pulmonary-disease-in-over-16s-diagnosis-and-management-pdf-66141600098245.
  13. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease 2020 Report. 2020 [cited: 2020-01-30]. https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf.
  14. Gemeinsamer Bundesausschuss (G-BA). Richtlinie des Gemeinsamen Bundesausschusses zur Zusammenführung der Anforderungen an strukturierte Behandlungsprogramme nach § 137f Absatz 2 SGB V (DMP-Anforderungen-Richtlinie/DMP-A-RL). 2019 [cited: 2020-02-04]. https://www.g-ba.de/downloads/62-492-2013/DMP-A-RL_2019-08-15_iK-2020-01-01.pdf.
  15. Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004; 350(10):1005–12. http://www.ncbi.nlm.nih.gov/pubmed/14999112.
  16. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Asthma - Langfassung, 3. Auflage. Version 1. 2018 [cited: 2018-09-21]. DOI: 10.6101/AZQ/000400. http://doi.org/10.6101/AZQ/000400.
  17. Alshabanat A, Zafari Z, Albanyan O, et al. Asthma and COPD Overlap Syndrome (ACOS): A Systematic Review and Meta Analysis. PLoS. One. 2015; 10(9):e0136065. DOI: 10.1371/journal.pone.0136065. http://www.ncbi.nlm.nih.gov/pubmed/26336076.
  18. Akmatov MK, Ermakova T, Holstiege J, Kohring C, Ng F, Völker S, Bätzing J. Überlappung von Asthma und COPD in der ambulanten Versorgung – Analyse anhand vertragsärztlicher Abrechnungsdaten. 2020 (Versorgungsatlas-Bericht; Nr. 20/06) [cited: 2021-02-08]. DOI: 10.20364/VA-20.06. https://www.versorgungsatlas.de/fileadmin/ziva_docs/113/VA_20-06_Bericht_ACO_2020-11-10.pdf.
  19. Steppuhn H, Kuhnert R, Scheidt-Nave C. 12-Monats-Prävalenz der bekannten chronisch obstruktiven Lungenerkrankung (COPD) in Deutschland. Journal of health monitoring 2017; 2(3):46–54. DOI: 10.17886/RKI-GBE-2017-053.
  20. Akmatov MK, Steffen A, Holstiege J, et al. Die chronisch obstruktive Lungenerkrankung (COPD) in der ambulanten Versorgung in Deutschland – Zeitliche Trends und kleinräumige Unterschiede. 2019 (Versorgungsatlas-Bericht; Nr. 19/06) [cited: 2019-09-02]. DOI: 10.20364/VA-19.06. https://www.versorgungsatlas.de/fileadmin/ziva_docs/99/VA_19-06_Bericht_COPD_2019-08-20_V2.pdf.
  21. Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur Respir J 2012; 40(6):1324–43. DOI: 10.1183/09031936.00080312. http://www.ncbi.nlm.nih.gov/pubmed/22743675.
  22. Hering T, Andres J. Das Patienten-Questionnnaire "Monitoring of Exacerbation Probability (MEP)". Pneumologie 2016; 70(2):98–102. DOI: 10.1055/s-0041-110312. http://www.ncbi.nlm.nih.gov/pubmed/26894391.
  23. Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), Wissenschaftlicher Aktionskreis Tabakentwöhnung (WAT), Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde (DGPPN), et al. Tabakentwöhnung bei COPD. 2013 [cited: 2017-05-29]. http://www.awmf.org/uploads/tx_szleitlinien/020-005l_S3_Tabakentw%C3%B6hnung_bei_COPD_2014-03.pdf.
  24. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF), Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde (DGPPN), Deutsche Gesellschaft für Suchtforschung und Suchttherapie (DG-Sucht), et al. S3-Leitlinie Rauchen und Tabakabhängigkeit: Screening, Diagnostik und Behandlung: Registernummer 076-006, Version 2021-01. 2021 [cited: 2021-03-11]. https://www.awmf.org/uploads/tx_szleitlinien/076-006l_S3_Rauchen-_Tabakabhaengigkeit-Screening-Diagnostik-Behandlung_2021-01.pdf.
  25. Deutsche Atemwegsliga, Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), Deutsche Gesellschaft für Arbeitsmedizin und Umweltmedizin (DGAUM). S2k-Leitlinie Spirometrie: Registernummer 020-017, Version 2015-05. 2014 [cited: 2016-10-11]. https://www.awmf.org/leitlinien/detail/ll/020-017.html.
  26. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Asthma - Langfassung, 4. Auflage. Version 1. 2020 [cited: 2020-09-07]. DOI: 10.6101/AZQ/000469. http://doi.org/10.6101/AZQ/000469.
  27. Quanjer PH, Brazzale DJ, Boros PW, et al. Implications of adopting the Global Lungs Initiative 2012 all-age reference equations for spirometry. Eur Respir J 2013; 42(4):1046–54. DOI: 10.1183/09031936.00195512. http://www.ncbi.nlm.nih.gov/pubmed/23520323.
  28. Guerriero M, Caminati M, Viegi G, et al. COPD prevalence in a north-eastern Italian general population. Respir Med 2015; 109(8):1040–7. DOI: 10.1016/j.rmed.2015.05.009. http://www.ncbi.nlm.nih.gov/pubmed/26052037.
  29. Borlee F, Yzermans CJ, Krop E, et al. Spirometry, questionnaire and electronic medical record based COPD in a population survey: Comparing prevalence, level of agreement and associations with potential risk factors. PLoS One 2017; 12(3):e0171494. DOI: 10.1371/journal.pone.0171494. http://www.ncbi.nlm.nih.gov/pubmed/28273094.
  30. Fisher AJ, Yadegarfar ME, Collerton J, et al. Respiratory health and disease in a U.K. population-based cohort of 85 year olds: The Newcastle 85+ Study. Thorax 2016; 71(3):255–66. DOI: 10.1136/thoraxjnl-2015-207249. http://www.ncbi.nlm.nih.gov/pubmed/26732736.
  31. Llordes M, Jaen A, Almagro P, et al. Prevalence, Risk Factors and Diagnostic Accuracy of COPD Among Smokers in Primary Care. COPD 2015; 12(4):404–12. DOI: 10.3109/15412555.2014.974736. http://www.ncbi.nlm.nih.gov/pubmed/25474184.
  32. Fiebich M. Praktischer Strahlenschutz am Patienten in der radiologischen Diagnostik. Radiologe 2017; 57(7):534–40. DOI: 10.1007/s00117-017-0258-3. http://www.ncbi.nlm.nih.gov/pubmed/28523491.
  33. Worth H, Buhl R, Criée C-P, et al. The 'real-life' COPD patient in Germany: The DACCORD study. Respir Med 2016; 111:64–71. DOI: 10.1016/j.rmed.2015.12.010. http://www.ncbi.nlm.nih.gov/pubmed/26775251.
  34. Nordrheinische Gemeinsame Einrichtung. Qualitätsbericht 2017 (Disease-Management-Programme in Nordrhein) [cited: 2019-07-29]. https://www.kvno.de/downloads/quali/qualbe_dmp17.pdf.
  35. Matte DL, Pizzichini MM, Hoepers AT, et al. Prevalence of depression in COPD: A systematic review and meta-analysis of controlled studies. Respir Med 2016; 117:154–61. DOI: 10.1016/j.rmed.2016.06.006. http://www.ncbi.nlm.nih.gov/pubmed/27492526.
  36. Willgoss TG, Yohannes AM. Anxiety disorders in patients with COPD: A systematic review. Respir Care 2013; 58(5):858–66. DOI: 10.4187/respcare.01862. http://www.ncbi.nlm.nih.gov/pubmed/22906542.
  37. West R, Hajek P, Stead L, et al. Outcome criteria in smoking cessation trials: Proposal for a common standard. Addiction 2005; 100(3):299–303. DOI: 10.1111/j.1360-0443.2004.00995.x. http://www.ncbi.nlm.nih.gov/pubmed/15733243.
  38. Löwe B, Wahl I, Rose M, et al. A 4-item measure of depression and anxiety: Validation and standardization of the Patient Health Questionnaire-4 (PHQ-4) in the general population. J Affect. Disord 2010; 122(1-2):86–95. DOI: 10.1016/j.jad.2009.06.019. http://www.ncbi.nlm.nih.gov/pubmed/19616305.
  39. Kroenke K, Spitzer RL, Williams JB, et al. An ultra-brief screening scale for anxiety and depression: The PHQ-4. Psychosomatics 2009; 50(6):613–21. DOI: 10.1176/appi.psy.50.6.613. http://www.ncbi.nlm.nih.gov/pubmed/19996233.
  40. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz – Langfassung, 3. Auflage. Version 1. 2019 [cited: 2019-10-23]. DOI: 10.6101/AZQ/000465. http://doi.org/10.6101/AZQ/000465.
  41. Karloh M, Fleig Mayer A, Maurici R, et al. The COPD Assessment Test: What Do We Know So Far?: A Systematic Review and Meta-Analysis About Clinical Outcomes Prediction and Classification of Patients Into GOLD Stages. Chest 2016; 149(2):413–25. DOI: 10.1378/chest.15-1752. http://www.ncbi.nlm.nih.gov/pubmed/26513112.
  42. Hering T, Andres J. COPD Classification GOLD I-IV vs. GOLD A-D in Real Life: Comparing Impact on Application, Advantages and Disadvantages. Pneumologie 2015; 69(11):645–53. DOI: 10.1055/s-0034-1393073. http://www.ncbi.nlm.nih.gov/pubmed/26458126.
  43. Zhou Z, Zhou A, Zhao Y, et al. A comparison of the assessment of health status between CCQ and CAT in a Chinese COPD clinical population: A cross-sectional analysis. Int J Chron Obstruct Pulmon Dis 2018; 13:1675–82. DOI: 10.2147/COPD.S161225. http://www.ncbi.nlm.nih.gov/pubmed/29872285.
  44. Jo YS, Park S, Kim DK, et al. The cutoff point of clinical chronic obstructive pulmonary disease questionnaire for more symptomatic patients. BMC Pulm Med 2018; 18(1):38. DOI: 10.1186/s12890-018-0601-0. http://www.ncbi.nlm.nih.gov/pubmed/29482616.
  45. Smid DE, Spruit MA, Deeg DJ, et al. How to determine an impaired health status in COPD: Results from a population-based study. Neth J Med 2017; 75(4):151–7. http://www.ncbi.nlm.nih.gov/pubmed/28522771.
  46. Tsiligianni IG, Alma HJ, Jong C de, et al. Investigating sensitivity, specificity, and area under the curve of the Clinical COPD Questionnaire, COPD Assessment Test, and Modified Medical Research Council scale according to GOLD using St George's Respiratory Questionnaire cutoff 25 (and 20) as reference. Int J Chron Obstruct Pulmon Dis 2016; 11:1045–52. DOI: 10.2147/COPD.S99793. http://www.ncbi.nlm.nih.gov/pubmed/27274226.
  47. Huang W-C, Wu M-F, Chen H-C, et al. Features of COPD patients by comparing CAT with mMRC: A retrospective, cross-sectional study. NPJ Prim Care Respir Med 2015; 25:15063. DOI: 10.1038/npjpcrm.2015.63. http://www.ncbi.nlm.nih.gov/pubmed/26538368.
  48. Rhee CK, Kim JW, Hwang YI, et al. Discrepancies between modified Medical Research Council dyspnea score and COPD assessment test score in patients with COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:1623–31. DOI: 10.2147/COPD.S87147. http://www.ncbi.nlm.nih.gov/pubmed/26316736.
  49. Xie G, Zhang Y, Zhou X. New disease severity classification of patients with stable chronic obstructive pulmonary disease in Shanghai. Chin Med J (Engl) 2014; 127(17):3046–50. http://www.ncbi.nlm.nih.gov/pubmed/25189943.
  50. Price DB, Baker CL, Zou KH, et al. Real-world characterization and differentiation of the Global Initiative for Chronic Obstructive Lung Disease strategy classification. Int J Chron Obstruct Pulmon Dis 2014; 9:551–61. DOI: 10.2147/COPD.S62104. http://www.ncbi.nlm.nih.gov/pubmed/24920893.
  51. Jones PW, Nadeau G, Small M, et al. Characteristics of a COPD population categorised using the GOLD framework by health status and exacerbations. Respir Med 2014; 108(1):129–35. DOI: 10.1016/j.rmed.2013.08.015. http://www.ncbi.nlm.nih.gov/pubmed/24041746.
  52. Jones PW, Adamek L, Nadeau G, et al. Comparisons of health status scores with MRC grades in COPD: Implications for the GOLD 2011 classification. Eur Respir J 2013; 42(3):647–54. DOI: 10.1183/09031936.00125612. http://www.ncbi.nlm.nih.gov/pubmed/23258783.
  53. Stockley RA, O'Brien C, Pye A, et al. Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. Chest 2000; 117(6):1638–45. DOI: 10.1378/chest.117.6.1638. http://www.ncbi.nlm.nih.gov/pubmed/10858396.
  54. Oelsner EC, Balte PP, Bhatt SP, et al. Lung function decline in former smokers and low-intensity current smokers: A secondary data analysis of the NHLBI Pooled Cohorts Study. Lancet Respir Med 2020; 8(1):34–44. DOI: 10.1016/S2213-2600(19)30276-0. http://www.ncbi.nlm.nih.gov/pubmed/31606435.
  55. Scanlon PD, Connett JE, Waller LA, et al. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am J Respir Crit Care Med 2000; 161(2 Pt 1):381–90. DOI: 10.1164/ajrccm.161.2.9901044. http://www.ncbi.nlm.nih.gov/pubmed/10673175.
  56. Kanner RE, Anthonisen NR, Connett JE. Lower respiratory illnesses promote FEV(1) decline in current smokers but not ex-smokers with mild chronic obstructive pulmonary disease: Results from the lung health study. Am J Respir Crit Care Med 2001; 164(3):358–64. DOI: 10.1164/ajrccm.164.3.2010017. http://www.ncbi.nlm.nih.gov/pubmed/11500333.
  57. Simmons MS, Connett JE, Nides MA, et al. Smoking reduction and the rate of decline in FEV(1): Results from the Lung Health Study. Eur Respir J 2005; 25(6):1011–7. DOI: 10.1183/09031936.05.00086804. http://www.ncbi.nlm.nih.gov/pubmed/15929955.
  58. PHS Guideline Update Panel, Liaisons, and Staff. Treating tobacco use and dependence: 2008 update U.S. Public Health Service Clinical Practice Guideline Executive Summary. Respir Care 2008; 53(9):1217–22. http://www.ncbi.nlm.nih.gov/pubmed/18807274.
  59. McRobbie H, Bullen C, Glover M, et al. New Zealand smoking cessation guidelines. N Z Med J 2008; 121(1276):57–70. http://www.ncbi.nlm.nih.gov/pubmed/18574510.
  60. van Eerd EA, van der Meer RM, van Schayck OC, et al. Smoking cessation for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2016(8):CD010744. DOI: 10.1002/14651858.CD010744.pub2. http://www.ncbi.nlm.nih.gov/pubmed/27545342.
  61. Ellerbeck EF, Nollen N, Hutcheson TD, et al. Effect of Long-term Nicotine Replacement Therapy vs Standard Smoking Cessation for Smokers With Chronic Lung Disease: A Randomized Clinical Trial. JAMA network open 2018; 1(5):e181843. DOI: 10.1001/jamanetworkopen.2018.1843. http://www.ncbi.nlm.nih.gov/pubmed/30646142.
  62. Zarghami M, Taghizadeh F, Sharifpour A, et al. Efficacy of Smoking Cessation on Stress, Anxiety, and Depression in Smokers with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Clinical Trial. Addiction & health 2018; 10(3):137–47. DOI: 10.22122/ahj.v10i3.600. http://www.ncbi.nlm.nih.gov/pubmed/31105911.
  63. Batra A. Therapie der Tabakabhängigkeit. Dtsch Arztebl Int 2011; 108(33):555–64. DOI: 10.3238/arztebl.2011.0555. http://www.ncbi.nlm.nih.gov/pubmed/21912578.
  64. Mühlig S, Jacobi F. Psychoedukation. In: Wittchen H-U, Hoyer J, editors. Klinische Psychologie & Psychotherapie. 2nd. Berlin: Springer; 2011, p. 478–490.
  65. Loth FG, Bickhardt J, Heindl T, et al. Modellprojekt zur Tabakentwöhnung bei COPD-Patienten in Sachsen und Thüringen: Methodik und erste Ergebnisse. AT 2017; 43(06):276–87. DOI: 10.5414/ATX02226. https://www.dustri.com/article_response_page.html?artId=15877&doi=10.5414/ATX02226&L=1.
  66. Kotz D, Wesseling G, Huibers MJ, et al. Efficacy of confronting smokers with airflow limitation for smoking cessation. Eur Respir J 2009; 33(4):754–62. DOI: 10.1183/09031936.00116308. http://www.ncbi.nlm.nih.gov/pubmed/19129277.
  67. Cardenas VM, Fischbach LA, Chowdhury P. The use of electronic nicotine delivery systems during pregnancy and the reproductive outcomes: A systematic review of the literature. Tobacco induced diseases 2019; 17:52. DOI: 10.18332/tid/104724. http://www.ncbi.nlm.nih.gov/pubmed/31582941.
  68. Carpenter MJ, Heckman BW, Wahlquist AE, et al. A Naturalistic, Randomized Pilot Trial of E-Cigarettes: Uptake, Exposure, and Behavioral Effects. Cancer Epidemiol Biomarkers Prev 2017; 26(12):1795–803. DOI: 10.1158/1055-9965.EPI-17-0460. http://www.ncbi.nlm.nih.gov/pubmed/29127080.
  69. D'Ruiz CD, Graff DW, Yan XS. Nicotine delivery, tolerability and reduction of smoking urge in smokers following short-term use of one brand of electronic cigarettes. BMC Public Health 2015; 15:991. DOI: 10.1186/s12889-015-2349-2. http://www.ncbi.nlm.nih.gov/pubmed/26424091.
  70. D'Ruiz CD, Graff DW, Robinson E. Reductions in biomarkers of exposure, impacts on smoking urge and assessment of product use and tolerability in adult smokers following partial or complete substitution of cigarettes with electronic cigarettes. BMC Public Health 2016; 16:543. DOI: 10.1186/s12889-016-3236-1. http://www.ncbi.nlm.nih.gov/pubmed/27401980.
  71. El Dib R, Suzumura EA, Akl EA, et al. Electronic nicotine delivery systems and/or electronic non-nicotine delivery systems for tobacco smoking cessation or reduction: A systematic review and meta-analysis. BMJ open 2017; 7(2):e012680. DOI: 10.1136/bmjopen-2016-012680. http://www.ncbi.nlm.nih.gov/pubmed/28235965.
  72. Farsalinos KE, Gillman G. Carbonyl Emissions in E-cigarette Aerosol: A Systematic Review and Methodological Considerations. Front Physiol 2017; 8:1119. DOI: 10.3389/fphys.2017.01119. http://www.ncbi.nlm.nih.gov/pubmed/29375395.
  73. Fernández E, Ballbè M, Sureda X, et al. Particulate Matter from Electronic Cigarettes and Conventional Cigarettes: A Systematic Review and Observational Study. Current environmental health reports 2015; 2(4):423–9. DOI: 10.1007/s40572-015-0072-x. http://www.ncbi.nlm.nih.gov/pubmed/26452675.
  74. Ferrari M, Zanasi A, Nardi E, et al. Short-term effects of a nicotine-free e-cigarette compared to a traditional cigarette in smokers and non-smokers. BMC Pulm Med 2015; 15:120. DOI: 10.1186/s12890-015-0106-z. http://www.ncbi.nlm.nih.gov/pubmed/26459355.
  75. Flach S, Maniam P, Manickavasagam J. E-cigarettes and head and neck cancers: A systematic review of the current literature. Clinical otolaryngology official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery 2019; 44(5):749–56. DOI: 10.1111/coa.13384. http://www.ncbi.nlm.nih.gov/pubmed/31148389.
  76. Gentry S, Forouhi NG, Notley C. Are Electronic Cigarettes an Effective Aid to Smoking Cessation or Reduction Among Vulnerable Groups? A Systematic Review of Quantitative and Qualitative Evidence. Nicotine & tobacco research official journal of the Society for Research on Nicotine and Tobacco 2019; 21(5):602–16. DOI: 10.1093/ntr/nty054. http://www.ncbi.nlm.nih.gov/pubmed/29608714.
  77. Glasser AM, Collins L, Pearson JL, et al. Overview of Electronic Nicotine Delivery Systems: A Systematic Review. Am J Prev Med 2017; 52(2):e33-e66. DOI: 10.1016/j.amepre.2016.10.036. http://www.ncbi.nlm.nih.gov/pubmed/27914771.
  78. Gualano MR, Passi S, Bert F, et al. Electronic cigarettes: Assessing the efficacy and the adverse effects through a systematic review of published studies. J Public Health (Oxf) 2015; 37(3):488–97. DOI: 10.1093/pubmed/fdu055. http://www.ncbi.nlm.nih.gov/pubmed/25108741.
  79. Hajek P, Phillips-Waller A, Przulj D, et al. A Randomized Trial of E-Cigarettes versus Nicotine-Replacement Therapy. N Engl J Med 2019; 380(7):629–37. DOI: 10.1056/NEJMoa1808779. http://www.ncbi.nlm.nih.gov/pubmed/30699054.
  80. Hess I, Lachireddy K, Capon A. A systematic review of the health risks from passive exposure to electronic cigarette vapour. Public health research & practice 2016; 26(2):e2621617. DOI: 10.17061/phrp2621617. http://www.ncbi.nlm.nih.gov/pubmed/27734060.
  81. Khoudigian S, Devji T, Lytvyn L, et al. The efficacy and short-term effects of electronic cigarettes as a method for smoking cessation: A systematic review and a meta-analysis. Int J Public Health 2016; 61(2):257–67. DOI: 10.1007/s00038-016-0786-z. http://www.ncbi.nlm.nih.gov/pubmed/26825455.
  82. Liu X, Lu W, Liao S, et al. Efficiency and adverse events of electronic cigarettes: A systematic review and meta-analysis (PRISMA-compliant article). Medicine (Baltimore) 2018; 97(19):e0324. DOI: 10.1097/MD.0000000000010324. http://www.ncbi.nlm.nih.gov/pubmed/29742683.
  83. Oncken CA, Litt MD, McLaughlin LD, et al. Nicotine concentrations with electronic cigarette use: Effects of sex and flavor. Nicotine & tobacco research official journal of the Society for Research on Nicotine and Tobacco 2015; 17(4):473–8. DOI: 10.1093/ntr/ntu232. http://www.ncbi.nlm.nih.gov/pubmed/25762758.
  84. Ramôa CP, Hiler MM, Spindle TR, et al. Electronic cigarette nicotine delivery can exceed that of combustible cigarettes: A preliminary report. Tob Control 2016; 25(e1):e6-9. DOI: 10.1136/tobaccocontrol-2015-052447. http://www.ncbi.nlm.nih.gov/pubmed/26324250.
  85. Riley HE, Berry-Bibee E, England LJ, et al. Hormonal contraception among electronic cigarette users and cardiovascular risk: A systematic review. Contraception 2016; 93(3):190–208. DOI: 10.1016/j.contraception.2015.11.003. http://www.ncbi.nlm.nih.gov/pubmed/26546021.
  86. Skotsimara G, Antonopoulos AS, Oikonomou E, et al. Cardiovascular effects of electronic cigarettes: A systematic review and meta-analysis. Eur J Prev Cardiol 2019; 26(11):1219–28. DOI: 10.1177/2047487319832975. http://www.ncbi.nlm.nih.gov/pubmed/30823865.
  87. Tseng T-Y, Ostroff JS, Campo A, et al. A Randomized Trial Comparing the Effect of Nicotine Versus Placebo Electronic Cigarettes on Smoking Reduction Among Young Adult Smokers. Nicotine & tobacco research official journal of the Society for Research on Nicotine and Tobacco 2016; 18(10):1937–43. DOI: 10.1093/ntr/ntw017. http://www.ncbi.nlm.nih.gov/pubmed/26783292.
  88. Hering T. E-Zigaretten-Einsatz bei COPD und Asthma bronchiale: Stellungnahme aus pneumologischer Perspektive. In: Stöver H, editor. Potentiale der E-Zigarette für Rauchentwöhnung und Public Health. Frankfurt/Main: Fachhochschulverlag; 2019, p. 29–36.
  89. Osei AD, Mirbolouk M, Orimoloye OA, et al. Association Between E-Cigarette Use and Chronic Obstructive Pulmonary Disease by Smoking Status: Behavioral Risk Factor Surveillance System 2016 and 2017. Am J Prev Med 2020; 58(3):336–42. DOI: 10.1016/j.amepre.2019.10.014. http://www.ncbi.nlm.nih.gov/pubmed/31902685.
  90. Bhatta DN, Glantz SA. Association of E-Cigarette Use With Respiratory Disease Among Adults: A Longitudinal Analysis. Am J Prev Med 2020; 58(2):182–90. DOI: 10.1016/j.amepre.2019.07.028. http://www.ncbi.nlm.nih.gov/pubmed/31859175.
  91. European Respiratory Society (ERS), Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP). ERS Positionspapier zur Tabak-Harm-Reduction. Stellungnahme, vorbereitet durch das ERS Tobacco Control Committee. 2019 [cited: 2020-07-27]. https://pneumologie.de/fileadmin/user_upload/Publikationen/ERS_Position_Paper_on_Tobacco_Harm_Reduction_DE.pdf.
  92. Nowak D, Gohlke H, Hering T, et al. Positionspapier der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e.V. (DGP) zur elektronischen Zigarette (E-Zigarette). Pneumologie 2015; 69(3):131–4. DOI: 10.1055/s-0034-1391491. http://www.ncbi.nlm.nih.gov/pubmed/25751070.
  93. McKeough ZJ, Velloso M, Lima VP, et al. Upper limb exercise training for COPD. Cochrane Database Syst Rev 2016; 11:CD011434. DOI: 10.1002/14651858.CD011434.pub2. http://www.ncbi.nlm.nih.gov/pubmed/27846347.
  94. Zainuldin R, Mackey MG, Alison JA. Optimal intensity and type of leg exercise training for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011(11):CD008008. DOI: 10.1002/14651858.CD008008.pub2. http://www.ncbi.nlm.nih.gov/pubmed/22071841.
  95. McNamara RJ, McKeough ZJ, McKenzie DK, et al. Water-based exercise training for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2013(12):CD008290. DOI: 10.1002/14651858.CD008290.pub2. http://www.ncbi.nlm.nih.gov/pubmed/24353107.
  96. Hill K, Mathur S, Roig M, et al. Neuromuscular electrostimulation for adults with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2018(5):CD010821. DOI: 10.1002/14651858.CD010821.pub2. http://www.ncbi.nlm.nih.gov/pubmed/29845600.
  97. Ngai SP, Jones AY, Tam WW. Tai Chi for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 2016(6):CD009953. DOI: 10.1002/14651858.CD009953.pub2. http://www.ncbi.nlm.nih.gov/pubmed/27272131.
  98. Gendron LM, Nyberg A, Maltais F, et al. Active mind-body movement therapies as an adjunct to or in comparison to pulmonary rehabilitation for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2018(10):CD012290. DOI: 10.1002/14651858.CD012290.pub2. http://www.ncbi.nlm.nih.gov/pubmed/30306545.
  99. Gloeckl R, Heinzelmann I, Kenn K. Whole body vibration training in patients with COPD: A systematic review. Chron Respir Dis 2015; 12(3):212–21. DOI: 10.1177/1479972315583049. http://www.ncbi.nlm.nih.gov/pubmed/25904085.
  100. Zhou J, Pang L, Chen N, et al. Whole-body vibration training - better care for COPD patients: A systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis 2018; 13:3243–54. DOI: 10.2147/COPD.S176229. http://www.ncbi.nlm.nih.gov/pubmed/30349230.
  101. Gosselink R, Vos J de, van den Heuvel SP, et al. Impact of inspiratory muscle training in patients with COPD: What is the evidence? Eur Respir J 2011; 37(2):416–25. DOI: 10.1183/09031936.00031810. http://www.ncbi.nlm.nih.gov/pubmed/21282809.
  102. Neves LF, Reis MH, Plentz RD, et al. Expiratory and expiratory plus inspiratory muscle training improves respiratory muscle strength in subjects with COPD: Systematic review. Respir Care 2014; 59(9):1381–8. DOI: 10.4187/respcare.02793. http://www.ncbi.nlm.nih.gov/pubmed/24782553.
  103. Beaumont M, Forget P, Couturaud F, et al. Effects of inspiratory muscle training in COPD patients: A systematic review and meta-analysis. Clin Respir J 2018; 12(7):2178–88. DOI: 10.1111/crj.12905. http://www.ncbi.nlm.nih.gov/pubmed/29665262.
  104. Ashworth NL, Chad KE, Harrison EL, et al. Home versus center based physical activity programs in older adults. Cochrane Database Syst Rev 2005(1):CD004017. DOI: 10.1002/14651858.CD004017.pub2. http://www.ncbi.nlm.nih.gov/pubmed/15674925.
  105. McCarthy B, Casey D, Devane D, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2015(2):CD003793. DOI: 10.1002/14651858.CD003793.pub3. http://www.ncbi.nlm.nih.gov/pubmed/25705944.
  106. GKV-Spitzenverband. Anlage 1a zu den Rahmenempfehlungen nach § 125 Abs. 1 SGB V vom 1. August 2001 in der Fassung vom 1. Juni 2006. 2006 [cited: 2020-06-17]. https://www.gkv-spitzenverband.de/media/dokumente/krankenversicherung_1/ambulante_leistungen/heilmittel/heilmittel_rahmenempfehlungen/125_Anlage_1a_208.pdf.
  107. Weise S, Kardos P. Empfehlungen zur Atemphysiotherapie. 3rd ed. München: Dustri-Verl. Feistle; 2019.
  108. Mayer AF, Karloh M, Dos Santos K, et al. Effects of acute use of pursed-lips breathing during exercise in patients with COPD: A systematic review and meta-analysis. Physiotherapy 2018; 104(1):9–17. DOI: 10.1016/j.physio.2017.08.007. http://www.ncbi.nlm.nih.gov/pubmed/28969859.
  109. Ubolsakka-Jones C, Pongpanit K, Boonsawat W, et al. Positive expiratory pressure breathing speeds recovery of postexercise dyspnea in chronic obstructive pulmonary disease. Physiother Res Int 2019; 24(1):e1750. DOI: 10.1002/pri.1750. http://www.ncbi.nlm.nih.gov/pubmed/30251299.
  110. Rocha T, Souza H, Brandao DC, et al. The Manual Diaphragm Release Technique improves diaphragmatic mobility, inspiratory capacity and exercise capacity in people with chronic obstructive pulmonary disease: A randomised trial. J Physiother 2015; 61(4):182–9. DOI: 10.1016/j.jphys.2015.08.009. http://www.ncbi.nlm.nih.gov/pubmed/26386894.
  111. Engel RM, Gonski P, Beath K, et al. Medium term effects of including manual therapy in a pulmonary rehabilitation program for chronic obstructive pulmonary disease (COPD): A randomized controlled pilot trial. J Man Manip Ther 2016; 24(2):80–9. DOI: 10.1179/2042618614Y.0000000074. http://www.ncbi.nlm.nih.gov/pubmed/27559277.
  112. Cross JL, Elender F, Barton G, et al. Evaluation of the effectiveness of manual chest physiotherapy techniques on quality of life at six months post exacerbation of COPD (MATREX): A randomised controlled equivalence trial. BMC Pulm Med 2012; 12:33. DOI: 10.1186/1471-2466-12-33. http://www.ncbi.nlm.nih.gov/pubmed/22748085.
  113. Yamaguti WP, Claudino RC, Neto AP, et al. Diaphragmatic breathing training program improves abdominal motion during natural breathing in patients with chronic obstructive pulmonary disease: A randomized controlled trial. Arch Phys Med Rehabil 2012; 93(4):571–7. DOI: 10.1016/j.apmr.2011.11.026. http://www.ncbi.nlm.nih.gov/pubmed/22464088.
  114. van Gestel AJ, Kohler M, Steier J, et al. The effects of controlled breathing during pulmonary rehabilitation in patients with COPD. Respiration 2012; 83(2):115–24. DOI: 10.1159/000324449. http://www.ncbi.nlm.nih.gov/pubmed/21474911.
  115. Valenza MC, Valenza-Pena G, Torres-Sanchez I, et al. Effectiveness of controlled breathing techniques on anxiety and depression in hospitalized patients with COPD: A randomized clinical Trial. Respir Care 2014; 59(2):209–15. DOI: 10.4187/respcare.02565. http://www.ncbi.nlm.nih.gov/pubmed/23882107.
  116. Liu F, Cai H, Tang Q, et al. Effects of an animated diagram and video-based online breathing program for dyspnea in patients with stable COPD. Patient Prefer Adherence 2013; 7:905–13. DOI: 10.2147/PPA.S43305. http://www.ncbi.nlm.nih.gov/pubmed/24049441.
  117. Borge CR, Mengshoel AM, Omenaas E, et al. Effects of guided deep breathing on breathlessness and the breathing pattern in chronic obstructive pulmonary disease: A double-blind randomized control study. Patient Educ Couns 2015; 98(2):182–90. DOI: 10.1016/j.pec.2014.10.017. http://www.ncbi.nlm.nih.gov/pubmed/25468399.
  118. Torres-Sanchez I, Valenza MC, Cebria I Iranzo MD, et al. Effects of different physical therapy programs on perceived health status in acute exacerbation of chronic obstructive pulmonary disease patients: A randomized clinical trial. Disabil Rehabil 2018; 40(17):2025–31. DOI: 10.1080/09638288.2017.1323236. http://www.ncbi.nlm.nih.gov/pubmed/28478693.
  119. Osadnik CR, McDonald CF, Jones AP, et al. Airway clearance techniques for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012(3):CD008328. DOI: 10.1002/14651858.CD008328.pub2. http://www.ncbi.nlm.nih.gov/pubmed/22419331.
  120. Venturelli E, Crisafulli E, DeBiase A, et al. Efficacy of temporary positive expiratory pressure (TPEP) in patients with lung diseases and chronic mucus hypersecretion. The UNIKO® project: A multicentre randomized controlled trial. Clin Rehabil 2013; 27(4):336–46. DOI: 10.1177/0269215512458940. http://www.ncbi.nlm.nih.gov/pubmed/22967853.
  121. Osadnik CR, McDonald CF, Miller BR, et al. The effect of positive expiratory pressure (PEP) therapy on symptoms, quality of life and incidence of re-exacerbation in patients with acute exacerbations of chronic obstructive pulmonary disease: A multicentre, randomised controlled trial. Thorax 2014; 69(2):137–43. DOI: 10.1136/thoraxjnl-2013-203425. http://www.ncbi.nlm.nih.gov/pubmed/24005444.
  122. Nicolini A, Mollar E, Grecchi B, et al. Comparison of intermittent positive pressure breathing and temporary positive expiratory pressure in patients with severe chronic obstructive pulmonary disease. Arch Bronconeumol 2014; 50(1):18–24. DOI: 10.1016/j.arbres.2013.07.019. http://www.ncbi.nlm.nih.gov/pubmed/24321380.
  123. Nicolini A, Mascardi V, Grecchi B, et al. Comparison of effectiveness of temporary positive expiratory pressure versus oscillatory positive expiratory pressure in severe COPD patients. Clin Respir J 2018; 12(3):1274–82. DOI: 10.1111/crj.12661. http://www.ncbi.nlm.nih.gov/pubmed/28665556.
  124. Reychler G, Debier E, Contal O, et al. Intrapulmonary Percussive Ventilation as an Airway Clearance Technique in Subjects With Chronic Obstructive Airway Diseases. Respir Care 2018; 63(5):620–31. DOI: 10.4187/respcare.05876. http://www.ncbi.nlm.nih.gov/pubmed/29692351.
  125. Goktalay T, Akdemir SE, Alpaydin AO, et al. Does high-frequency chest wall oscillation therapy have any impact on the infective exacerbations of chronic obstructive pulmonary disease? A randomized controlled single-blind study. Clin Rehabil 2013; 27(8):710–8. DOI: 10.1177/0269215513478226. http://www.ncbi.nlm.nih.gov/pubmed/23503735.
  126. Nicolini A, Grecchi B, Ferrari-Bravo M, et al. Safety and effectiveness of the high-frequency chest wall oscillation vs intrapulmonary percussive ventilation in patients with severe COPD. Int J Chron Obstruct Pulmon Dis 2018; 13:617–25. DOI: 10.2147/COPD.S145440. http://www.ncbi.nlm.nih.gov/pubmed/29497290.
  127. Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), Deutsche Atemwegsliga, Deutsche Patientenliga Atemwegserkrankungen, et al. S2k-Leitlinie der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von erwachsenen Patienten mit Husten. AWMF-Register-Nr.: 020-003. 2019 [cited: 2020-01-31]. https://www.awmf.org/uploads/tx_szleitlinien/020-003l_S2k_Diagnostik-Therapie-erwachsene-Patienten-mit-Husten_2019-12.pdf.
  128. Holland AE, Hill CJ, Jones AY, et al. Breathing exercises for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 10:CD008250. DOI: 10.1002/14651858.CD008250.pub2. http://www.ncbi.nlm.nih.gov/pubmed/23076942.
  129. Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Asthma - Leitlinienreport, 4. Auflage. Version 1. 2020 [cited: 2020-09-07]. DOI: 10.6101/AZQ/000470. http://doi.org/10.6101/AZQ/000470.
  130. Wittmann M, Spohn S, Schultz K, et al. Patient education in COPD during inpatient rehabilitation improves quality of life and morbidity. Pneumologie 2007; 61(10):636–42. DOI: 10.1055/s-2007-980106. http://www.ncbi.nlm.nih.gov/pubmed/17886195.
  131. Bosch D, Feierabend M, Becker A. COPD outpatient education programme (ATEM) and BODE index. Pneumologie 2007; 61(10):629–35. DOI: 10.1055/s-2007-980081. http://www.ncbi.nlm.nih.gov/pubmed/17661240.
  132. Worth H, Dhein Y. Does patient education modify behaviour in the management of COPD? N Engl J Med 2004; 52(3):267–70. DOI: 10.1016/S0738-3991(03)00101-0. http://www.ncbi.nlm.nih.gov/pubmed/14998596.
  133. McDonald M-LN, Wouters EF, Rutten E, et al. It's more than low BMI: Prevalence of cachexia and associated mortality in COPD. Respir Res 2019; 20(1):100. DOI: 10.1186/s12931-019-1073-3. http://www.ncbi.nlm.nih.gov/pubmed/31118043.
  134. Ferreira IM, Brooks D, White J, et al. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 12:CD000998. DOI: 10.1002/14651858.CD000998.pub3. http://www.ncbi.nlm.nih.gov/pubmed/23235577.
  135. Bundesarbeitsgemeinschaft für Rehabilitation (BAR). Rahmenempfehlungen zur ambulanten pneumologischen Rehabilitation. 2008 [cited: 2020-06-22]. https://www.bar-frankfurt.de/fileadmin/dateiliste/_publikationen/reha_vereinbarungen/pdfs/Rahmenempfehlung_pneumologische_Reha.pdf.
  136. Deutscher Verband der Ergotherapeuten (DVE). Ergotherapie. Definition. 2007 [cited: 2020-06-22]. https://dve.info/ergotherapie/definition.
  137. World Health Organization (WHO), Deutsches Institut für Medizinische Dokumentation und Information, DIMDI WHO-Kooperationszentrum für das System Internationaler Klassifikationen. Internationale Klassifikation der Funktionsfähigkeit, Behinderung und Gesundheit (ICF). Geneva: WHO; 2005.
  138. Gemeinsamer Bundesausschuss (G-BA). Richtlinie über die Verordnung von Heilmitteln in der vertragsärztlichen Versorgung (Heilmittel-Richtlinie/HeilM-RL). 2011 [cited: 2020-06-22]. https://www.g-ba.de/downloads/62-492-2167/HeilM-RL_2020-03-20_iK-2020-06-06.pdf.
  139. Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP). Nichtinvasive und invasive Beatmung als Therapie der chronischen respiratorischen Insuffizienz - Revision 2017. S2k - Leitlinie. Registernummer 020-008. 2017 [cited: 2020-07-27]. https://www.awmf.org/uploads/tx_szleitlinien/020-008l_S2k_NIV_Nichtinvasive_invasive_Beatumung_Insuffizienz_2017-10-verlaengert.pdf.
  140. Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP). S2k-Leitlinie zur Langzeit-Sauerstofftherapie: Registernummer 020-002, Version 2020-08. 2021 [cited: 2021-03-11]. https://www.awmf.org/uploads/tx_szleitlinien/020-002l_S2k_Langzeit_Sauerstofftherapie_2020-08.pdf.
  141. Cranston JM, Crockett AJ, Moss JR, et al. Domiciliary oxygen for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2005(4):CD001744. DOI: 10.1002/14651858.CD001744.pub2. http://www.ncbi.nlm.nih.gov/pubmed/16235285.
  142. Ameer F, Carson KV, Usmani ZA, et al. Ambulatory oxygen for people with chronic obstructive pulmonary disease who are not hypoxaemic at rest. Cochrane Database Syst Rev 2014(6):CD000238. DOI: 10.1002/14651858.CD000238.pub2. http://www.ncbi.nlm.nih.gov/pubmed/24957353.
  143. Bradley JM, O'Neill B. Short-term ambulatory oxygen for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2005(4):CD004356. DOI: 10.1002/14651858.CD004356.pub3. http://www.ncbi.nlm.nih.gov/pubmed/16235359.
  144. Nonoyama ML, Brooks D, Lacasse Y, et al. Oxygen therapy during exercise training in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2007(2):CD005372. DOI: 10.1002/14651858.CD005372.pub2. http://www.ncbi.nlm.nih.gov/pubmed/17443585.
  145. Ekstrom M, Ahmadi Z, Bornefalk-Hermansson A, et al. Oxygen for breathlessness in patients with chronic obstructive pulmonary disease who do not qualify for home oxygen therapy. Cochrane Database Syst Rev 2016; 11:CD006429. DOI: 10.1002/14651858.CD006429.pub3. http://www.ncbi.nlm.nih.gov/pubmed/27886372.
  146. Berthold J, Behr J, Buhr-Schinner H. Klug entscheiden: . in der Pneumologie. Dtsch Arztebl 2016; 113(19):A-930-33.
  147. Menadue C, Piper AJ, van 't Hul AJ, et al. Non-invasive ventilation during exercise training for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014(5):CD007714. DOI: 10.1002/14651858.CD007714.pub2. http://www.ncbi.nlm.nih.gov/pubmed/24823712.
  148. Struik FM, Lacasse Y, Goldstein R, et al. Nocturnal non-invasive positive pressure ventilation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2013(6):CD002878. DOI: 10.1002/14651858.CD002878.pub2. http://www.ncbi.nlm.nih.gov/pubmed/23766138.
  149. Pollok J, van Agteren JE, Esterman AJ, et al. Psychological therapies for the treatment of depression in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2019; 3(3):CD012347. DOI: 10.1002/14651858.CD012347.pub2. http://www.ncbi.nlm.nih.gov/pubmed/30838649.
  150. Usmani ZA, Carson KV, Heslop K, et al. Psychological therapies for the treatment of anxiety disorders in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 3:CD010673. DOI: 10.1002/14651858.CD010673.pub2. http://www.ncbi.nlm.nih.gov/pubmed/28322440.
  151. Wiles L, Cafarella P, Williams MT. Exercise training combined with psychological interventions for people with chronic obstructive pulmonary disease. Respirology (Carlton, Vic.) 2015; 20(1):46–55. DOI: 10.1111/resp.12419. http://www.ncbi.nlm.nih.gov/pubmed/25339508.
  152. Bundesärztekammer (BÄK). (Muster-)Kursbuch Psychosomatische Grundversorgung mit integriertem Fortbildungscurriculum „Patientenzentrierte Kommunikation“. 2018 [cited: 2018-10-10]. http://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/Fortbildung/Muster-Kursbuch_PSGV.pdf.
  153. Deutsche Rentenversicherung Bund (DRV-Bund). Leistungsfähigkeit bei chronisch obstruktiver Lungenkrankheit (COPD) und Asthma bronchiale. 2010 (Leitlinien für die sozialmedizinische Begutachtung) [cited: 2020-07-24]. https://www.deutsche-rentenversicherung.de/SharedDocs/Downloads/DE/Experten/infos_fuer_aerzte/begutachtung/leitlinie_leistungsfaehigkeit_lunge_langfassung_pdf.pdf;jsessionid=0BAE0CA9EE6F1C833B49DD3DD1396187.delivery1-3-replication?__blob=publicationFile&v=1.
  154. Gloeckl R, Schneeberger T, Jarosch I, et al. Rehabilitation und Trainingstherapie bei chronisch obstruktiver Lungenerkrankung. Dtsch Arztebl Int 2018; 115(8):117–23. DOI: 10.3238/arztebl.2018.0117. http://www.ncbi.nlm.nih.gov/pubmed/29526182.
  155. Appleton S, Jones T, Poole P, et al. Ipratropium bromide versus short acting beta-2 agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2006(2):CD001387. DOI: 10.1002/14651858.CD001387.pub2. http://www.ncbi.nlm.nih.gov/pubmed/16625543.
  156. Ni H, Soe Z, Moe S. Aclidinium bromide for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014(9):CD010509. DOI: 10.1002/14651858.CD010509.pub2. http://www.ncbi.nlm.nih.gov/pubmed/25234126.
  157. Chong J, Karner C, Poole P. Tiotropium versus long-acting beta-agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012(9):CD009157. DOI: 10.1002/14651858.CD009157.pub2. http://www.ncbi.nlm.nih.gov/pubmed/22972134.
  158. Jara M, Wentworth C, Lanes S. A new user cohort study comparing the safety of long-acting inhaled bronchodilators in COPD. BMJ open 2012; 2(3). DOI: 10.1136/bmjopen-2012-000841. http://www.ncbi.nlm.nih.gov/pubmed/22619266.
  159. Vogelmeier C, Fabbri LM, Rabe KF, et al. Effect of tiotropium vs. salmeterol on exacerbations: GOLD II and maintenance therapy naïve patients. Respiratory medicine 2013; 107(1):75–83. DOI: 10.1016/j.rmed.2012.09.015. http://www.ncbi.nlm.nih.gov/pubmed/23102611.
  160. Gershon A, Croxford R, Calzavara A, et al. Cardiovascular safety of inhaled long-acting bronchodilators in individuals with chronic obstructive pulmonary disease. JAMA Intern Med 2013; 173(13):1175–85. DOI: 10.1001/jamainternmed.2013.1016. http://www.ncbi.nlm.nih.gov/pubmed/23689820.
  161. Dong Y-H, Chang C-H, Gagne JJ, et al. Comparative Cardiovascular and Cerebrovascular Safety of Inhaled Long-Acting Bronchodilators in Patients with Chronic Obstructive Pulmonary Disease: A Population-Based Cohort Study. Pharmacotherapy 2016; 36(1):26–37. DOI: 10.1002/phar.1684. http://www.ncbi.nlm.nih.gov/pubmed/26799347.
  162. Suissa S, Dell'Aniello S, Ernst P. Long-Acting Bronchodilator Initiation in COPD and the Risk of Adverse Cardiopulmonary Events: A Population-Based Comparative Safety Study. Chest 2017; 151(1):60–7. DOI: 10.1016/j.chest.2016.08.001. http://www.ncbi.nlm.nih.gov/pubmed/27554300.
  163. Wang M-T, Liou J-T, Lin CW, et al. Association of Cardiovascular Risk With Inhaled Long-Acting Bronchodilators in Patients With Chronic Obstructive Pulmonary Disease: A Nested Case-Control Study. JAMA Intern Med 2018; 178(2):229–38. DOI: 10.1001/jamainternmed.2017.7720. http://www.ncbi.nlm.nih.gov/pubmed/29297057.
  164. Ni H, Moe S, Soe Z, et al. Combined aclidinium bromide and long-acting beta2-agonist for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 2018(12):179. DOI: 10.1002/14651858.CD011594. http://www.ncbi.nlm.nih.gov/pubmed/30536566.
  165. Farne HA, Cates CJ. Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2015(10):CD008989. DOI: 10.1002/14651858.CD008989.pub3. http://www.ncbi.nlm.nih.gov/pubmed/26490945.
  166. Tan DJ, White CJ, Walters JA, et al. Inhaled corticosteroids with combination inhaled long-acting beta2-agonists and long-acting muscarinic antagonists for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2016; 11:CD011600. DOI: 10.1002/14651858.CD011600.pub2. http://www.ncbi.nlm.nih.gov/pubmed/27830584.
  167. Lee S-D, Xie C-M, Yunus F, et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium compared with tiotropium alone in patients with severe or very severe COPD: A randomized, multicentre study in East Asia. Respirology 2016; 21(1):119–27. DOI: 10.1111/resp.12646. http://www.ncbi.nlm.nih.gov/pubmed/26394882.
  168. Vestbo J, Papi A, Corradi M, et al. Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): A double-blind, parallel group, randomised controlled trial. Lancet 2017; 389(10082):1919–29. DOI: 10.1016/S0140-6736(17)30188-5. http://www.ncbi.nlm.nih.gov/pubmed/28385353.
  169. Chapman KR, Hurst JR, Frent S-M, et al. Long-Term Triple Therapy De-escalation to Indacaterol/Glycopyrronium in Patients with Chronic Obstructive Pulmonary Disease (SUNSET): A Randomized, Double-Blind, Triple-Dummy Clinical Trial. Am J Respir Crit Care Med 2018; 198(3):329–39. DOI: 10.1164/rccm.201803-0405OC. http://www.ncbi.nlm.nih.gov/pubmed/29779416.
  170. Papi A, Vestbo J, Fabbri L, et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): A double-blind, parallel group, randomised controlled trial. Lancet 2018; 391(10125):1076–84. DOI: 10.1016/S0140-6736(18)30206-X. http://www.ncbi.nlm.nih.gov/pubmed/29429593.
  171. Ferguson GT, Rabe KF, Martinez FJ, et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): A double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med 2018; 6(10):747–58. DOI: 10.1016/S2213-2600(18)30327-8. http://www.ncbi.nlm.nih.gov/pubmed/30232048.
  172. Lipson DA, Barnhart F, Brealey N, et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med 2018; 378(18):1671–80. DOI: 10.1056/NEJMoa1713901. http://www.ncbi.nlm.nih.gov/pubmed/29668352.
  173. Lipson DA, Barnacle H, Birk R, et al. FULFIL Trial: Once-Daily Triple Therapy for Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 196(4):438–46. DOI: 10.1164/rccm.201703-0449OC. http://www.ncbi.nlm.nih.gov/pubmed/28375647.
  174. Singh D, Papi A, Corradi M, et al. Single inhaler triple therapy versus inhaled corticosteroid plus long-acting beta2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): A double-blind, parallel group, randomised controlled trial. Lancet 2016; 388(10048):963–73. DOI: 10.1016/S0140-6736(16)31354-X. http://www.ncbi.nlm.nih.gov/pubmed/27598678.
  175. Rabe KF, Martinez FJ, Ferguson GT, et al. Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med 2020; 383(1):35–48. DOI: 10.1056/NEJMoa1916046. http://www.ncbi.nlm.nih.gov/pubmed/32579807.
  176. Bafadhel M, McKenna S, Terry S, et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: A randomized placebo-controlled trial. Am J Respir Crit Care Med 2012; 186(1):48–55. DOI: 10.1164/rccm.201108-1553OC. http://www.ncbi.nlm.nih.gov/pubmed/22447964.
  177. Brightling CE, McKenna S, Hargadon B, et al. Sputum eosinophilia and the short term response to inhaled mometasone in chronic obstructive pulmonary disease. Thorax 2005; 60(3):193–8. DOI: 10.1136/thx.2004.032516. http://www.ncbi.nlm.nih.gov/pubmed/15741434.
  178. Brightling CE, Monteiro W, Ward R, et al. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: A randomised controlled trial. Lancet 2000; 356(9240):1480–5. http://www.ncbi.nlm.nih.gov/pubmed/11081531.
  179. Kew KM, Seniukovich A. Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014(3):CD010115. DOI: 10.1002/14651858.CD010115.pub2. http://www.ncbi.nlm.nih.gov/pubmed/24615270.
  180. Horita N, Goto A, Shibata Y, et al. Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus inhaled corticosteroid (ICS) for stable chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 2017; 2:CD012066. DOI: 10.1002/14651858.CD012066.pub2. http://www.ncbi.nlm.nih.gov/pubmed/28185242.
  181. Sliwka A, Jankowski M, Gross-Sindej I, et al. Once-daily long-acting beta₂-agonists/inhaled corticosteroids combined inhalers versus inhaled long-acting muscarinic antagonists for people with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2018(8):CD012355. DOI: 10.1002/14651858.CD012355.pub2. http://www.ncbi.nlm.nih.gov/pubmed/30141826.
  182. Oba Y, Fadila M, Keeney E, et al. Dual combination therapy versus long-acting bronchodilators alone for chronic obstructive pulmonary disease (COPD): A systematic review and network meta-analysis. Cochrane Database Syst Rev 2018(12):CD012620. DOI: 10.1002/14651858.CD012620.pub2. http://www.ncbi.nlm.nih.gov/pubmed/30521694.
  183. Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 9(9):CD002309. DOI: 10.1002/14651858.CD002309.pub5. http://www.ncbi.nlm.nih.gov/pubmed/28922692.
  184. European Medicines Agency (EMA). Assessment report. Daxas. International non-proprietary name: roflumilast.: Procedure No. EMEA/H/C/001179/X/0035. 2018 [cited: 2020-02-04]. https://www.ema.europa.eu/en/documents/variation-report/daxas-h-c-1179-x-0035-epar-assessment-report-extension_en.pdf.
  185. Normansell R, Kew KM, Mathioudakis AG. Interventions to improve inhaler technique for people with asthma. Cochrane Database Syst Rev 2017; 3:CD012286. DOI: 10.1002/14651858.CD012286.pub2. http://www.ncbi.nlm.nih.gov/pubmed/28288272.
  186. Doyle S, Lloyd A, Williams A, et al. What happens to patients who have their asthma device switched without their consent? Prim Care Respir J 2010; 19(2):131–9. DOI: 10.4104/pcrj.2010.00009. http://www.ncbi.nlm.nih.gov/pubmed/20174771.
  187. Thomas M, Price D, Chrystyn H, et al. Inhaled corticosteroids for asthma: Impact of practice level device switching on asthma control. BMC Pulm Med 2009; 9:1. DOI: 10.1186/1471-2466-9-1. http://www.ncbi.nlm.nih.gov/pubmed/19121204.
  188. Ekberg-Jansson A, Svenningsson I, Ragdell P, et al. Budesonide inhaler device switch patterns in an asthma population in Swedish clinical practice (ASSURE). Int J Clin Pract 2015; 69(10):1171–8. DOI: 10.1111/ijcp.12685. http://www.ncbi.nlm.nih.gov/pubmed/26234385.
  189. Walters JA, Walters EH, Wood-Baker R. Oral corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2005(3):CD005374. DOI: 10.1002/14651858.CD005374. http://www.ncbi.nlm.nih.gov/pubmed/16034972.
  190. Herath SC, Normansell R, Maisey S, et al. Prophylactic antibiotic therapy for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 2018; 10(10):CD009764. DOI: 10.1002/14651858.CD009764.pub3. http://www.ncbi.nlm.nih.gov/pubmed/30376188.
  191. Poole P, Sathananthan K, Fortescue R. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2019; 5:CD001287. DOI: 10.1002/14651858.CD001287.pub6. http://www.ncbi.nlm.nih.gov/pubmed/31107966.
  192. Cazzola M, Rogliani P, Calzetta L, et al. Impact of Mucolytic Agents on COPD Exacerbations: A Pair-wise and Network Meta-analysis. COPD 2017; 14(5):552–63. DOI: 10.1080/15412555.2017.1347918. http://www.ncbi.nlm.nih.gov/pubmed/28753070.
  193. Cazzola M, Calzetta L, Page C, et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: A meta-analysis. Eur Respir Rev 2015; 24(137):451–61. DOI: 10.1183/16000617.00002215. http://www.ncbi.nlm.nih.gov/pubmed/26324807.
  194. Fowdar K, Chen H, He Z, et al. The effect of N-acetylcysteine on exacerbations of chronic obstructive pulmonary disease: A meta-analysis and systematic review. Heart Lung 2017; 46(2):120–8. DOI: 10.1016/j.hrtlng.2016.12.004. http://www.ncbi.nlm.nih.gov/pubmed/28109565.
  195. Worth H, Schacher C, Dethlefsen U. Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: A placebo-controlled double-blind trial. Respir Res 2009; 10(1):1297. DOI: 10.1186/1465-9921-10-69. http://www.ncbi.nlm.nih.gov/pubmed/19624838.
  196. Salpeter S, Ormiston T, Salpeter E. Cardioselective beta-blockers for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2005(4):CD003566. DOI: 10.1002/14651858.CD003566.pub2. http://www.ncbi.nlm.nih.gov/pubmed/16235327.
  197. Dransfield MT, Voelker H, Bhatt SP, et al. Metoprolol for the Prevention of Acute Exacerbations of COPD. N Engl J Med 2019; 381(24):2304–14. DOI: 10.1056/NEJMoa1908142. http://www.ncbi.nlm.nih.gov/pubmed/31633896.
  198. Walters JA, Tang JN, Poole P, et al. Pneumococcal vaccines for preventing pneumonia in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 1:CD001390. DOI: 10.1002/14651858.CD001390.pub4. http://www.ncbi.nlm.nih.gov/pubmed/28116747.
  199. Kopsaftis Z, Wood-Baker R, Poole P. Influenza vaccine for chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev 2018; 6(6):CD002733. DOI: 10.1002/14651858.CD002733.pub3. http://www.ncbi.nlm.nih.gov/pubmed/29943802.
  200. Pletz MW, Ewig S, Heppner HJ, et al. Stellungnahme zur Empfehlung der Pneumokokken-Impfung für Erwachsene Positionspapier der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP) und der Deutschen Gesellschaft für Geriatrie (DGG). Pneumologie 2015; 69(11):633–7. DOI: 10.1055/s-0034-1393413. http://www.ncbi.nlm.nih.gov/pubmed/26523835.
  201. Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin (DGP), Paul-Ehrlich-Gesellschaft für Chemotherapie (PEG), Deutsche Gesellschaft für Infektiologie, et al. Behandlung von erwachsenen Patienten mit ambulant erworbener Pneumonie und Prävention. Update 2016. 2016 [cited: 2019-10-16]. http://www.awmf.org/uploads/tx_szleitlinien/020-020l_S3_ambulant_erworbene_Pneumonie_Behandlung_Praevention_2016-02-2.pdf.
  202. Ständige Impfkommission am Robert Koch Institut (STIKO). Mitteilung der Ständigen Impfkommission (STIKO) beim Robert Koch-Institut (RKI) Empfehlungen der Ständigen Impfkommission beim Robert Koch-Institut – 2019/2020. Epidemiol Bull RKI 2019(34):313–64. DOI: 10.25646/6233.6.
  203. Puhan MA, Gimeno-Santos E, Cates CJ, et al. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2016; 12:CD005305. DOI: 10.1002/14651858.CD005305.pub4. http://www.ncbi.nlm.nih.gov/pubmed/27930803.
  204. Schultz K, Jelusic D, Wittmann M, et al. Inspiratory muscle training does not improve clinical outcomes in 3-week COPD rehabilitation: Results from a randomised controlled trial. Eur Respir J 2018; 51(1). DOI: 10.1183/13993003.02000-2017. http://www.ncbi.nlm.nih.gov/pubmed/29371382.
  205. Taube K. Verordnung von Lungensport. Pneumologe 2017; 14(6):345–53. DOI: 10.1007/s10405-017-0140-z.
  206. Worth H, Bock R, Frisch M, et al. Ambulanter Lungensport und körperliches Training bei Patienten mit Atemwegs- und Lungenkrankheiten. Pneumologie 2021; 75(1):44–56. DOI: 10.1055/a-1224-6024. http://www.ncbi.nlm.nih.gov/pubmed/33167049.
  207. Duruturk N, Arikan H, Ulubay G, et al. A comparison of calisthenic and cycle exercise training in chronic obstructive pulmonary disease patients: A randomized controlled trial. Expert Rev Respir Med 2016; 10(1):99–108. DOI: 10.1586/17476348.2015.1126419. http://www.ncbi.nlm.nih.gov/pubmed/26616764.
  208. Greulich T, Kehr K, Nell C, et al. A randomized clinical trial to assess the influence of a three months training program (gym-based individualized vs. calisthenics-based non-invidualized) in COPD-patients. Respir Res 2014; 15:36. DOI: 10.1186/1465-9921-15-36. http://www.ncbi.nlm.nih.gov/pubmed/24666558.
  209. Normandin EA, McCusker C, Connors M, et al. An evaluation of two approaches to exercise conditioning in pulmonary rehabilitation. Chest 2002; 121(4):1085–91. http://www.ncbi.nlm.nih.gov/pubmed/11948036.
  210. Probst VS, Kovelis D, Hernandes NA, et al. Effects of 2 exercise training programs on physical activity in daily life in patients with COPD. Respir Care 2011; 56(11):1799–807. DOI: 10.4187/respcare.01110. http://www.ncbi.nlm.nih.gov/pubmed/22035826.
  211. Glöckl R, Göhl O, Spielmanns M, et al. Stellenwert ambulanter, gerätegestützter Trainingstherapie bei Atemwegs- und Lungenkrankheiten. Ein Positionspapier der AG Lungensport. Pneumologie 2016; 70(7):446–53. DOI: 10.1055/s-0042-105898. http://www.ncbi.nlm.nih.gov/pubmed/27218214.
  212. Bundesärztekammer (BÄK). Telemedizinische Methoden in der Patientenversorgung – Begriffliche Verortung. 2015 [cited: 2020-01-27]. https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/Telemedizin_Telematik/Telemedizin/Telemedizinische_Methoden_in_der_Patientenversorgung_Begriffliche_Verortung.pdf.
  213. McCabe C, McCann M, Brady AM. Computer and mobile technology interventions for self-management in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 5:CD011425. DOI: 10.1002/14651858.CD011425.pub2. http://www.ncbi.nlm.nih.gov/pubmed/28535331.
  214. McLean S, Nurmatov U, Liu JL, et al. Telehealthcare for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2011(7):CD007718. DOI: 10.1002/14651858.CD007718.pub2. http://www.ncbi.nlm.nih.gov/pubmed/21735417.
  215. Hong Y, Lee SH. Effectiveness of tele-monitoring by patient severity and intervention type in chronic obstructive pulmonary disease patients: A systematic review and meta-analysis. Int J Nurs Stud 2019; 92:1–15. DOI: 10.1016/j.ijnurstu.2018.12.006. http://www.ncbi.nlm.nih.gov/pubmed/30690162.
  216. Lundell S, Holmner Å, Rehn B, et al. Telehealthcare in COPD: A systematic review and meta-analysis on physical outcomes and dyspnea. Respir Med 2015; 109(1):11–26. DOI: 10.1016/j.rmed.2014.10.008. http://www.ncbi.nlm.nih.gov/pubmed/25464906.
  217. Kruis AL, Smidt N, Assendelft WJ, et al. Integrated disease management interventions for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2013(10):CD009437. DOI: 10.1002/14651858.CD009437.pub2. http://www.ncbi.nlm.nih.gov/pubmed/24108523.
  218. Wong CX, Carson KV, Smith BJ. Home care by outreach nursing for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012(4):CD000994. DOI: 10.1002/14651858.CD000994.pub3. http://www.ncbi.nlm.nih.gov/pubmed/22513899.
  219. Lenferink A, Brusse-Keizer M, van der Valk PD, et al. Self-management interventions including action plans for exacerbations versus usual care in patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2017; 8:CD011682. DOI: 10.1002/14651858.CD011682.pub2. http://www.ncbi.nlm.nih.gov/pubmed/28777450.
  220. Zwerink M, Brusse-Keizer M, van der Valk PD, et al. Self management for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2014(3):CD002990. DOI: 10.1002/14651858.CD002990.pub3. http://www.ncbi.nlm.nih.gov/pubmed/24665053.
  221. Howcroft M, Walters EH, Wood-Baker R, et al. Action plans with brief patient education for exacerbations in chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2016; 12:CD005074. DOI: 10.1002/14651858.CD005074.pub4. http://www.ncbi.nlm.nih.gov/pubmed/27990628.
NVL COPD, 2. Auflage, 2021. Version 1

Mehr zur NVL COPD

Bitte beachten Sie, dass nur die unter www.leitlinien.de enthaltenen Dokumente des Programms für Nationale VersorgungsLeitlinien durch die Träger des NVL-Programms autorisiert und damit gültig sind. Bei NVL-Dokumenten, die Sie von anderen Webseiten beziehen, übernehmen wir keine Verantwortung für deren Gültigkeit.

Das Archiv enthält abgelaufene, zurückgezogene Dokumente zur Nationalen Versorgungsleitlinie COPD.

Hinweise und Kommentare

Sie haben Hinweise und Kommentare zu unserem Internetangebot?

Wird geladen
zuletzt verändert: 24.08.2021 | 14:39 Uhr